
This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the
University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48, Lawrence Berkeley National Laboratory under contract No.
DE-AC02-05CH11231 and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396.

Human Computer Interface Analysis of Tier1/2/3 Bioinformatics Tools
Annette Greiner, Kristen Taylor

BEFORE YOU CODE Do A Five Step Makeover
Improve Usability in ONE DAY or less

Bioinformatics software tools perform sophisticated jobs. Creating
interfaces that are powerful and yet easy to use and learn is not simple.
Often, development cycles are short and user feedback is limited. Running a
simple usability test on a prototype before any real code is written can
ultimately save time. The results from a usability test can improve the ease
of use and learnability of both web applications and programmatic
interfaces. The following outlines a five-step process that can be completed
in approximately one day.

STEP 1 - Create Usability Test Tasks
- Interview Users about the tasks they need to accomplish (four to six users
is ideal). Do a rigorous needs assessment: observe how users execute their
tasks currently; look for points where the user leaves the system to get or set
data. Does the user use other applications to gather data to execute the task?
Does the user look information up in a book?
- Create a high-level list of the tasks users would like to accomplish with
the system. An example task might be "Compare the nucleotide sequences
of two homologous genes." Avoid creating detailed outlines of steps (such
as instructions about where to click). You want to observe how users get
from start to finish, not tell them how to do it.

STEP 2 – Create “Low Fidelity” Prototype
Users execute the usability test tasks created in step one on “low fidelity”
prototypes. We discuss three types of prototypes that can be created to help
observe user interaction. These prototypes are “low fidelity” because very
little time is invested in creating them. It is easy to modify them or throw
them away and start over.
-Paper Prototype: use paper and sticky notes to create a mock-up of the
interface. Use acetate overlays to show state changes.
-Prototyping Software – Denim is an informal web prototyping tool that
lets users sketch interfaces and add functioning buttons and links.
Developed at the University of Washington- Prof. James Landay -
http://dub.washington.edu/denim/.
-Stub Prototypes for programmatic interfaces: A stub is a thin-layer
interface that contains empty function calls. The calls would have the list of
parameters but perform no action except to return the appropriate response
to the user.
* As you design the prototype, look for ways to minimize the number of
exposed interface controls. Before bringing the prototype to the user, try the
usability test tasks yourself.

Step 3 – Test Prototype on Users Attempting to Do Usability Test Tasks
-Use at least 3 users, preferably a mix of advanced and novice users.
-Observe, don’t coach users, as they perform the usability test tasks.
-Note usability problems and gather user comments.

Step 4 – Triage Usability Issues and Modify Interface
-Review the results from all users.
-Prioritize issues found.
-Update usability test tasks and prototype.

Step 5 – Repeat steps 2 – 4
At this point the process can be considered completed. However, another
round of testing users with an updated prototype will help verify that
changes made were successful. The more iterations you can make with this
process the more usable your interface will be.

TIER 1
Application Example: BLAST Web Page

-This BLAST page has an interface that is simple to learn and
use. Users perform one main task that follows a
straightforward execution path.
- Parameter choices are clearly defined.
-The page has few options, which makes the density of
interface controls low.

TIER 1:
Usability

- Attempting to increase flexibility by adding more options
may complicate the process and learnability.

- Avoid complication by doing a rigorous needs assessment
before creating usability test tasks.

- For example, this BLAST page encapsulates less
frequently used options in an advanced settings button.

TIER 1: Interaction flow and usage patterns are
simple.

TIER 2
Application Example: Genome Browser

- A Genome Browser can be very difficult to learn and use. Users can
perform multiple tasks and the execution path may even take users
outside of the browser and then back.

- There are multiple layers of parameter choices and associated behaviors.
Education is required to fully understand all the options available

- There are multiple levels of information. Density of interface controls is
high.

TIER 2:
Usability

- Creating low-fidelity prototypes for this type of project can be
overwhelming because of the multiple layers of information and high
density of controls.

- Focus usability test tasks and prototype changes on areas that are critical
or require more education before users can use them.

- For example, it is not obvious how the main area of the browser, at left, is
used. Clicking on a gene model may expand the model or take the user to
another application

TIER 2: Interaction flow and usage
patterns are complex and may take
users outside the application and
back.

PIPELINE/WORKFLOW API TIER 3:
Application Example: Pipeline API

- It is important to consider usability when developing programmatic interfaces
such as an Application Program Interface (API) for a pipeline.

- Pipeline interfaces require advanced users, and there is a learning curve
associated with the API.

- The developer does not control the execution paths a user may choose, and an
infinite number of execution path possibilities exist.

TIER 3:
Usability

- There is a tendency to over-engineer API calls. Adding features for special
cases can decrease usability (and increase potential bugs.)

- Creating a stub as a prototype and observing how users use and interpret API
names and parameters can help eliminate unnecessary features and
redundancy and lead to a more usable API.

Tier 3: Data flow and usage patterns
are varied and not controlled by the
developer

[rm__fbgm1_%FBGM1_TRACK%]
Description=cleanup table list file;
Script Path=/bin;
Script Type=0;
Predecessor=;
Current Working Directory=%BASEDIR%/fbgm1.%FBGM1_TRACK%;
Output Directory=%BASEDIR%/fbgm1.%FBGM1_TRACK%;
Resource Requirement=TINY;
PARAM table list file=%BASEDIR%/fbgm1.%FBGM1_TRACK%/tabList;
PARAM force-f=;

[TEMPLATE:FilterModelsBPL.template]
Description=does setup for and blasts, parses, hspGroups, and loads model data;
Script Path=/home/analysis/pipeline/templates;
Predecessor=rm__fbgm1_%FBGM1_TRACK%;

[findBestGM1__%FBGM1_TRACK%.pl]
Description=do filtering of gene model tracks;
Script Path=%HAB%;
Script Type=0;
Predecessor=TEMPLATE:FilterModelsBPL.template;
Current Working Directory=%BASEDIR%/fbgm1.%FBGM1_TRACK%;
Output Directory=%BASEDIR%/fbgm1.%FBGM1_TRACK%;
Resource Requirement=TINY;
PARAM table list file=%BASEDIR%/fbgm1.%FBGM1_TRACK%/tabList;
PARAM user=internal;
PARAM password=w00kie;
PARAM dbname=%DATABASE%;
PARAM tableName=%FBGM1_TRACK%Orig;
PARAM num sol-m=%FBGM1_NUM_SOL%;
PARAM minLen-n=%FBGM1_MIN_LEN%;
PARAM overlap-o=%FBGM1_OVERLAP%;
PARAM host-H=%DBHOST%;
PARAM output dir-C=%BASEDIR%/fbgm1.%FBGM1_TRACK%;

[infoToSrcList__%FBGM1_TRACK%.pl]
Description=take info file from fbgm1 and make input file for trackCopy;
Script Path=%HAB%;
Script Type=0;
Predecessor=findBestGM1__%FBGM1_TRACK%.pl;
Current Working Directory=%BASEDIR%/fbgm1.%FBGM1_TRACK%;
Output Directory=%BASEDIR%/fbgm1.%FBGM1_TRACK%;
Resource Requirement=TINY;
PARAM input file=%BASEDIR%/fbgm1.%FBGM1_TRACK%/%FBGM1_TRACK%OrigInfo.txt;
PARAM output file=%BASEDIR%/fbgm1.%FBGM1_TRACK%/srcList;

[rm__fbgm1
_%FBGM1_T
RACK%]

[rm__fbgm1
_%FBGM1_T
RACK%]

[rm__fbgm1
_%FBGM1_T
RACK%]

Current
Working
Directory=%Current

Working
Directory=%

Description=d
oes setup for
and blast s,

Description=d
oes setup for
and blast s,

Path=/home/a
nalysis/pipelin
e/ templ ates;

Path=/home/a
nalysis/pipelin
e/templ ates;

Directory=%B
ASEDIR%/fbg
m1.%FBGM1_

Directory=%B
ASEDIR%/fbg
m1.%FBGM1_

BGM1_TRAC
K%;
Resou rc e

BGM1_TRAC
K%;
Resou rc e

Resou rce
Requi reme
nt=TINY;

Resou rce
Requireme
nt=TINY;

file=%BASEDI
R%/fbgm1.%F
BGM1_TRACK

file=%BASEDI
R%/fbgm1.%F
BGM1_TRACK

_TRACK%/ta
bList;
PARAM

_TRACK%/ta
bList;
PARAM

_TRACK%/ta
bList;
PARAM

_TRACK%/ta
bList;
PARAM

LBNL-61198 Poster

UCRL

